
EFFECTIVE CONDUCTIVITY OF A BODY WITH A LARGE NUMBER 

OF CRACKS TAKING INTO ACCOUNT THEIR CAPACITANCE 

AND THE ACTION OF MECHANICAL LOADS 

R. L. Salganik UDC 537.3] 

The problem of cracks acting as electrical capacitors and subjected to mechani- 
cal loads is considered. 

The problem of a crack subjected to a mechanical load in an electric field acting as a 
capacitance is considered, and for a body with a large number of noninteracting cracks a 
relation is obtained between the effective current density and the electric field strength. 
Note that in view of the well-known mathematical analogy this problem can also be considered 
as the problem of heat conduction (the current density corresponds to the heat flux, and the 
electric field strength corresponds to the temperature gradient with opposite sign). For 
the medium inside the crack there is a nonquasistationary heat-conduction law: in the expres- 
sion for the heat flow there is a term proportional to the rate of variation of the tempera- 
ture gradient. 

For fairly rapid changes in the currents, due either to the sources producing them or 
due to changes in the opening of the cracks because of mechanical loads, or both together, 
cracks with a high resistance of the medium between them, operating as electric capacitors, 
begin to pass current. This effect is considered below when the rate of change of the elec- 
tric fields, while being sufficient for the effect to appear, at the same time is not too 
large, so that the electric-field distribution around the crack can be assumed at each in- 
stant of time to satisfy the steady-state equations (the skin effect can be neglected for 
distances of the order of the size of a crack). 

]. If the crack has an elliptical shape in plan, and is opened by a uniform field of 
stresses, and also, possibly, by the action of a uniformly distributed internal pressure, 
its shape is described by an ellipsoid. The problem of an ellipsoid in a conducting medium 
possessing properties different from it and situated in a uniform electric field has been 
solved accurately; the electric field inside the ellipsoid turns out to be uniform. 

Below, for simplicity, we will consider a disk-shaped crack of radius a. In the loaded 
state its change in thickness is described by an ellipsoid of rotation with polar semiaxis c 
and radius of the equator a. 

Assuming the material to be isotropic, and denoting by o the field component of the 
mechanical stresses far from the crack normal to the crack, and by p the pressure in the 
crack, we have for its normal elastic semiopening w []] 

40--~)  (~ + p) ~ r~, (1) 
~ ~ E  0 

where vo is Poisson's ratio of the material. For a crack with a negligibly small initial 
thickness, c = w. Henceforth, we will consider the more general case when the initial thick- 
ness of the crack is also described by an ellipsoid of rotation with minor semiaxis co and 
radius a. Then 

c = Co + w. (2) 

We will assume that the electric fields and currents are not so strong as to produce 
mechanical stresses, which could affect the opening of the crack. 

The electrical conductivity of the material will be denoted by %o. Using the well- 
known analogy between problems of electrical conductions, we can write for the field inside 
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the ellipsoid relations corresponding to the electrostatic problem [2], replacing the elec- 
tric induction vector by the current-density vector, and the permittivity of the material by 
its electrical conductivity. 

We thereby obtain for the field components perpendicular to the crack 

(1 -- n•  ~oO~) q- n •  i~)  = ~oG• ---- ] •  ( 3 )  

Here we denote by G and j the electric field strength and the current density far from the 
crack, the superscript (i) denotes the corresponding quantity inside the crack, and n_t = 
B-3(l + 82)(B -- arctg ~), ~ = /(a/c) = ~-I. A similar relation holds for the field components 
in the plane of the crack (which we will denote by the index II) with n• replaced by nll = 
I/2(I --n ). Taking (I) and (2) into account and the fact that (c/a) <<I, we have 

1 :~c o + a-} -  p (1 --:v~). (4 )  
n •  = l - -  s ,  n n = s ,  s = 2- - -J  

These r e l a t i o n s ,  because  of the  u n i f o r m i t y  of the  f i e l d  i n s i d e  the  e l l i p s o i d ,  ho ld  fo r  
any relation between j~) and G~) , and j~() and G(1)., 

The medium in  the  c rack  w i l l  be assumed to  be s l i g h t l y  conduc t ing  so t h a t  i t  can s imul -  
t a n e o u s l y  be r e p r e s e n t e d  by a p e r m i t t i v i t y  ~c and an e l e c t r i c a l  c o n d u c t i v i t y  %c- The cu r -  
r e n t  d e n s i t y  in  t h i s  medium i s  made up of the  d i s p l a c e m e n t  c u r r e n t  d e n s i t y  and the  conduc-  
t i o n  c u r r e n t  d e n s i t y  

dG(i) . . . . . .  
j(O = e= - - ~  + ~,cU t''. (5) 

From (3)-(5), neglecting s compared with unity, we obtain 

�9 1 G~) I dG~) + __  _= Gi .  (6) 
dt x, x 

Here 

Similarly, substituting into (3) n a from (4) instead of n t , and using (2), we obtain with 
the same accuracy 

�9 2 -1-ys . 2 dG(l:) ~- ~ G ( i [ )  = GII " (7) 
dt s~ sx 

It can be seen from (6) that the characteristic time of the variation of G (i) is of the 
order of T s. When considering processes with a characteristic time of this order the deriva- 
tive in (7) can be omitted: its ratio to the term following it is of the order of s(s + y) 
(2 + ys), I . Consequently, GIi) = (I + Z/2ys) . The most interesting case is when the opening 
of the crack has an effect on ~s, i.e., when y is of the order ~s or less. 

This case is also considered below. Solving Eq. (6), we obtain 

t t , t 

dt' ~ + 1  
G~)---- G~ 0 exp ( - -  ~ s ( t , ) /  : .I Gi (t')exp ( - -  .t 5 ' ) )  dr'' (8) 

to to t '  

Here G• is the value of the normal component of the electric field in the crack when t = to. 
If there is no electric field at the initial instant, this quantity is equal to zero. If 
there is a steady state at the initial instant (in this case s = so and G• = G• than, 
equating the derivative in (6) to zero, we obtain p (i) = G(so + y)-~ Hence we see that in- 

~ O ~ 

side the crack the normal component of the electric field is far greater than far away. This, 
as can be seen from (8), also occurs in the nonsteady state mode when the variations of the 
electric field occur in a time of the order of Ts: the second term is of the order of G• 
T, i.e., G• + y) -I, where s, is on the order of s, 

On the other hand, the tangential component of the field, due to the smallness of sT, 
hardly changes when crossing into the crack, while the tangential component of the current 
density is not more than a (s, + y) part of the normal component. We will now clarify the 
conditions under which the expressions obtained are applicable. 

In order that the displacement currents in the body can be neglected compared with the 
conduction currents, as was done above, it is necessary for the changes in the electric field 
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occurring during the characteristic time ~s should not be very rapid. If the body is not a 
good conductor and can be represented by a constant permittivity eo in addition to %o, this 
requirement means that we must have Ts << eo%~ I or, taking (7) into account 

For  good c o n d u c t o r s  r h e r e  means t h e  c o r r e s p o n d i n g  index q u a n t i t y .  Under normal c o n d i t i o n s  
(9) can a lways  be  assumed to  be  s a t i s f i e d  due t o  t h e  s m a l l n e s s  of  s .  + y. 

In  o r d e r  t h a t  t h e  e l e c t r i c  f i e l d  around the  c r a c k  can be assumed a t  each i n s t a n t  o f  t ime 
to  s a t i s f y  t h e  s t e a d y - s t a t e  e q u a t i o n s ,  t he  c h a r a c t e r i s t i c  t ime  ~s must  be f a r  g r e a t e r  than  
the  b u i l d u p  t ime  o f  t he  e l e c t r i c  f i e l d  around the  c r a c k ,  which i s  o f  t he  o r d e r  of  a i~o~ ,  
where ~ i s  t h e  m a g n e t i c  p e r m e a b i l i t y  of  t he  body.  Th i s  l e a d s  to  t h e  c o n d i t i o n  

a~ [~/~ ~, + ~1,/2 ~ ,  , (l o) 

i.e., for a given crack size the approximation considered is better the higher the resisti- 
vity of the body %7 ~ (note that the quantity on the right in (10) corresponds to the skin 
depth in the body at a frequency of the order r~:). 

The resistivity of materials varies over an extremely wide range so various cases are 
possible. We will confine ourselves to a single example. We will take %~I = i0 ~ ~-m. These 
values are characteristic for a number of rocks and constructional materials. The values of 
E c and ~ will be taken as approximately equal to their values for a vacuum, viz., 10 -9 (36~) -I 
sec.~-X.m ~ and 4~'I0 -r ~-sec.m -I. We will take s, + y = 10-2-10 -3 (the necessary smallness 
of y is ensured for many versions of the filling of cracks, in particular, for fillings with 
gases and polymer materials). For the assumed values of the quantities we have T s = 10 -2- 
10 -3 sec, and condition (I0) is satisfied with a large margin for normal crack sizes. 

In view of the fact that G~)>>G• a situation is possible where electric breakdown 
occurs in the crack. Consideration of these phenomena is outside the scope of this article. 

We also note that in the surrounding material when approaching the contour of the crack 
the field strength and current density formally become infinite. In fact, there is a small 
end region where they are very large. This fact can be important under fracture conditions 
at the end of the crack. 

2. The relation between the effective current density and the electric field strength 
for a body containing a large number of cracks can be obtained by averaging the true values 
of these quantities over the volume (see, e.g., [2]), which we denote by angular brackets. 
The true values of the quantities will be denoted by primes, and quantities averaged over the 
volume will be written without primes. Without loss of generality, the averaging volume can 
be assumed to be unity. The cracks are assumed to be noninteracting (low concentration). 

In Cartesian components (k = I, 2, 3) we have 

< i~ -- ~0o~ > = i~ -- ~00~ (~ I ) 

On the other hand, since the averaged expression is zero outside the crack 

< i~ - Zoa~ > = 8_ za~s ( i ~  - ~o~,~). ( J 2 )  
3 

Here the superscript (i) denotes, as previously, the fields inside the cracks, and since they 
are uniform in the cracks, the integration over the volume of the crack can be replaced by 
multiplication by this volume, and summation is extended to all the cracks in unit volume. 
The terms in (12) are expressed in terms of G k using the relations in Sec. I. As a result, 
we obtain an expression for Jk in terms of G k from (]1) and (]2). 

Neglecting all terms on the order of s, and higher on the right side of (12), only 
terms of the order of s~ z should remain in the round brackets. These terms, as was shown in 
Sec. I, can only arise due to electric field components normal to the crack. Hence, 

Here n k are the components of the vector of the unit normal to the crack which are expressed 
in terms of the spherical width ~ and length ~ using the equations 

n ~ = s i n ~ c o s %  n z = s i n ~ s i n %  n s = c o s ~ .  (14) 

Below the set of angles ~, ~ will be denoted by ~, while the element of the solid angle sin 

d~ d~ will be denoted by d~. 

706 



An expression for ](~i-7--~O(j_) is obtained from (8) and (5). 

order of s~ ~ (or, which amounts to the same thing, (s, + y)-1), we have 

t - - t ,  t 

M = .~t 

Retaining only terms on the 

(15) 

t 
_ ~' 

0 t - - t "  t .  

8e ~Co + Glmnlnm+p (l--v~),  %= (17) 
s -  2a 2E0 ~ ( s  + 7 )  

We have  used  h e r e  t h e  e x p r e s s i o n s  G• = Otnz ;  ~ = ~lmn~nm; O~m a r e  t h e  componen t s  o f  t h e  
m e c h a n i c a l  s t r e s s  t e n s o r ;  t h e  r e c u r r e n t  i n d i c e s  mean summat ion  f rom 1 t o  3,  and when c h a n g -  
ing  to  (16)  t h e  v a r i a b l e  o f  i n t e g r a t i o n  t '  i s  r e p l a c e d  by  t -- t ' .  Note  t h a t  f o r  a s u f f i -  
c i e n t l y  l a r g e  e l a s t i c  o p e n i n g  o f  t h e  c r a c k s ,  when the  f i r s t  t e r m  ~ s can  be n e g l e c t e d ,  t h e  
e x p l i c i t  d e p e n d e n c e  o f  ~s on a and co d i s a p p e a r s .  

When t h e  t r a n s i e n t  b e g i n s  f rom t h e  i n i t i a l  s t e a d y  s t a t e ,  G ( ~  = n z G z ( 0 ) ( s o  + y ) - x  and 
the  second  t e r m  in (16) i s  f ~ i t e .  

We w i l l  d e n o t e  by  Z t h e  s e t  o f  p a r a m e t e r s { d ,  co ,  t o ,  po,  co ,  he} ,  where  po i s  t h e  i n i -  
t i a l  p r e s ~ r e  in  t h e  c r a c k ;  t h e  p r o d u c t  o f  t h e  d i f f e r e n t i a l s  o f  t h e s e  p a r a m e t e r s  w i l l  be  
d e n o t e d  by dZ. T h e s e  p a r a m e t e r s ,  l i k e  ~, may v a r y  f rom c r a c k  to  c r a c k .  The i n c l u s i o n  i n  
Z o f  t h e  q u a n t i t y  to  may b e  i m p o r t a n t  i f  t h e  c r a c k s  o c c u r  u n d e r  a l o a d .  We w i l l  a l s o  assume 
t h a t  t h e  ~ r r e n t  p r e s s u r e  p i n  t h e  c r a c k  i s  d e t e r m i n e d  by a c e r t a i n  e ~ a t i o n  o f  s t a t e .  

We w i l l  i n t r o d u c e  t h e  d i s t r i b u t i o n  d e n s i t y  of  t h e  c r a c k  f ( t ,  Z, ~ ) ,  so t h a t  fdZd~ • 
(4~0 -~ i s  t h e  number o f  c r a c k s  p e r  u n i t  v o l u m e ,  t h e  s e t  o f  p a r a m e t e r s  of  which  l i e s  i n  t h e  
l i m i t s  dZ, d~ i n  t h e  r e g i o n  o f  Z, ~. D e n o t i n g  by N t h e  t o t a l  r~amber o f  c r a c k s  p e r  u n i t  
vo lume ( t h i s  number  may,  g e n e r a l l y  s p e a k i n g ,  v a r y  w i t h  t i m e )  we h a v e  

~f (t, Z, fl) dZd~ = 4gN. (! 7'  ) 

With t h i s  d e f i n i t i o n  o f  f we o b t a ~  f rom r e l a t i o n s  (11) and ( 1 2 ) ,  c h a n g i n g  f rom summat ion  t o  
i n t e g r a t i o n  and u s i n g  (13)  and ( I 5 ) ,  

2 ~3 n~M[dZd~} �9 
J k = ~ [ G ~  3~ ~ S - ~  (18) 

Hence we see  c h a t  t h e  c o n t r i b u t i o n  f rom each  c r a c k  o n l y  becomes  f i n i t e  when a v a l u e  o f  s i s  
r e a c h e d  (much l e s s  t h a n  u n i t y )  on t h e  o r d e r  o f  y o r  g r e a t e r .  For  a c r a c k  w i t h  a n e g l i g i b l y  
s m a l l  i n i t i a l  t h i c k n e s s  t h i s  b e g i n s  f o r  s m a l l e r  l o ~ s  o p e n i n g  t h e  c r a c k ,  the  h i g h e r  t h e  e l e c -  
t r i c a l  r e s i s t a n c e  o f  t h e  medium i n s i d e  i t .  The e f f e c t  o f  a l l  the  c r a c k s  in  t h i s  c a s e  i s  o f  
t h e  o r d e r  o f  the  p r o d u c t  o f  t h e i r  number  p e r  u n i t  vo lume  by  t h e  cube  o f  t he  c h a r a c t e r i s t i c  
r a d i u s ,  which  i s  a s m a l l  p a r a m e t e r ;  t h e  i n t e g r a I  in  (18) i s  t h e  f i r s t  t e r m  o f  t h e  e x p a n s i o n  
with respect to this parameter. 

For a system of parallel cracks, e.g., with normals orientated along the first axis, 
in the given approximation they will only affect j~. In this case 

i~=~ G~--~- s+v 
where when calculating M and s from (16) and (17) we have ~nz=Gi, Gtmnznm=otl. 

If the mechanical field is constant (s = so), while the electric field undergoes sinu- 
soidal oscillations and is no longer in the steady state, so that G l and Jl are proportional 
to exp(i~t), where ~ is the angular frequency, then we obtain for the complex amplitudes (we 
denote them by the same letters) from (16) to (|8) assuming to to be fairly large, 

ih = XhlG~, Zk~= ~ 6kt 3n (s + 7)(1 - -  io~q) fdaZd~ . (20)  

For  a~ = 0 and y = 0 Eq. (20) becomes  t h e  e x p r e s s i o n  o b t a i n e d  i n  [3] f o r  t h e  e f f e c t ~ e  
r e s i s t a n c e  o f  a body w i t h  n o n c o n d u c t i n g  c r a c k s .  When ~ 0  i t  can  be  s e e n  from (20) t h a t  
there are phase shifts between the components of the current density and the electric field 
strength, which depend on Ok~ andp. One can determine OkZ andp from these shifts. 
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Consider a simple example. We will assume that the cracks are nonconducting (~<< s,), 
perpendicular to the first axis, the pressures in them are the same, and the elastic opening 
of the cracks is fairly large in the sense mentioned above. Then, from (20), (16), and (;7), 
assuming that this system of cracks only affects the relation between jl and GI, we have 

/• ~--g0 l----v , v=NaL (21) 
3 1 - -  itox~ . 

x ,  -~ ~ ( 1  - - v ~ ) ( ~ l i  + 'P) ' ( 2 2 )  

where the bar denotes averaging over the distribution of the radii of the cracks. Hence we 
find that the current density will lag in phase behind the field strength by a small angle 
6, approximately coinciding with its tangent, which, to within terms of higher order of 
smallness in v, is given by 

(0T s = __8 v -  (23) 
3 i +~[ 

The maximum phase shift occurs at a frequency ~m = ~s I and the value of this shift is 6 m = 
4/av. From these relations, using (22), we can find oi~ + p (or one of these quantities 
when the other is known) and v = (3/4)~m- 

We will now assume that in this system transient cracks occur due to variability of the 
load, say, a pulsed change with an initial steady state with s = so, j1| = jr(o), G = G1(o), 

keeping G~ unchanged. We will assume that s = so + • where • = I [s(t) -- so]dt and s 

is given by Eq. (17) with ~zmnlnr~ replaced by o~. As a result, we fl-n~ from (]6) and (19) 

h--J~co~ = . . . . . .  8 v 1 exp  e x p  . ( 2 4 )  
J~0~ 3 ir r } 

In  s e m i l o g a r i t h m i c  c o o r d i n a t e s  t h i s  r e l a t i o n s h i p  can  be e x p r e s s e d  by a s t r a i g h t  l i n e ,  
f rom t h e  a n g u l a r  c o e f f i c i e n t  o f  which  we can o b t a i n  so ,  and from t h e  i n t e r s e c t i o n  on t h e  
o r d i n a t e  a x i s  o f  which  we can  o b t a i n  v ;  in  t h e  c a s e  o f  a fairly l a r g e  s t r e t c h i n g  p u l s e  (• >> 
T) v can  be  found  w i t h o u t  knowing  X- 

Fo r  an i s o t r o p i c  s y s t e m  o f  c r a c k s  and an i s o t r o p i c  s t r e s s e d  s t a t e  ( ~ i k  = O~ik) we can  
u s e  t he  same e q u a t i o n s  (23)  and (24) in  wh ich  8 /3  i s  r e p l a c e d  by  8 / 9  and ~11 i s  r e p l a c e d  by 

No te  t h a t  f o r  m o t i o n s  o f  t h e  e l e m e n t s  of  t he  body  G i s  s u p p l e m e n t e d  by  a t e r m  o f  t h e  
o r d e r  of  t he  p r o d u c t  o f  t h e i r  v e l o c i t y  u b y  the  m a g n e t i c  i n d u c t i o n  p roduced  by  the  c u r r e n t s  
f l o w i n g  in  t h e  b o d y ,  e q u a l  in  o r d e r  o f  m a g n i t u d e  to  ZoGa~ [ 2 ] .  ( T h i s  t e r m  i s  i g n o r e d  in t h i s  
a p p r o x i m a t i o n . )  C o n s e q u e n t l y ,  i t  i s  n e c e s s a r y  t h a t  t h e  c o n d i t i o n  f o r  t h i s  t e r m  t o  be  s m a l l  
compared with G be satisfied, i.e., 

u << ( z ~ a ~ ) - t  (25) 

Even under dynamic conditions this condition is satisfied over a wide range of material 
properties (the electric and magnetic quantities are expressed in a rational system) and 
crack dimensions. 

In order that the consideration of the transient electrical phenomena occurring during 
a time of the order of T s should make sense, condition (25) must be satisfied in all cases 
for u of the order of ~S~s I. This, as is easily seen, leads to a condition of the form (10) 
with a right-hand side s, -~/= times greater, i.e., this is certainly the case if (|0) is 

satisfied. 

NOTATION 

a, Co, and w, radius, initial half-thickness at the center, and the elastic semiopening 
of the crack; p, pressure in the crack; o, component of the mechanical stress far from the 
crack normal to the crack; Eo, Young's modulus; vo, Poisson's ratio; ~o, electrical conductiv- 
ity of the material; co, constant permittivity or (for a good conducting material) the cor- 
responding index value; co, permittivity of the medium in the crack; Ec, electrical conduc- 
tivity of the medium; G and j, electric field and current density vectors, respectively; the 
index (i) denotes their values inside the crack; and • and | , components of these vectors 
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perpendicular and parallel to the plane of the crack, respectively; t, time; to, time when 
the process Jk begins; Gk, Cartesian components of the current density and electric field 
vectors averaged over the volume; Ok% , components of the stress tensor; nk, components of 
the vector of the unit normal to the-crack; ~ and 4, spherical width and length specifying 
the direction of this vector; Z = {a, Co, to, po, ec, ~c}; po, initial value of p; ~ = {~, 
4}, f(Z, ~), distribution function; N, number of cracks per unit volume; ~3, root mean cubic 
radius of the crack; and m, angular frequency of the electric field oscillations. 

I. 

2. 

. 
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NUMERICAL SOLUTION OF A NONLINEAR POISSON EQUATION 

L. A. Knizhnerman, V. A. Kronrod, 
and V. Z. Sokolinskii 

UDC 517.544:536.24.02 

A method that is convenient for practical applications is proposed for solving 
the nonlinear Poisson equation. 

A particular class of problems for heat exchange and for magnetohydrodynamics leads to 
the solution of the Poisson equation with a substantial nonlinearity on the right-hand side. 

We consider the Dirichlet problem for Poisson's equation 

Au (x, ~ = f (x, y, u), ulr = �9 (x, y). ( ] )  

To s i m p l i f y  t h e  d i s c u s s i o n ,  we assume t h e  r e g i o n  to  be  r e c t a n g u l a r .  U s i n g  q u a s i l i n e a r i z a t i o n  
[1] we c o n s t r u c t  t he  f o l l o w i n g  i t e r a t i o n a l  p r o c e s s :  

a o - t ; ( w ) o  = (2) 

where  w = u ( n ) ;  v = u ( n + t ) ;  n i s  t h e  number  o f  t he  i t e r a t i o n .  

The i t e r a t i o n a l  p r o c e s s  (2)  e n s u r e s  q u a d r a t i c  c o n v e r g e n c e  f o r  t h e  c o n d i t i o n  o f  e x a c t  
solution of (2) with fixed right-hand side for each iteration []]. 

To determine the values of v for each iteration we use a method of incomplete factoriza- 
tion, similar to that described in [2]. But unlike what was assumed in [2] the splitting of 
the initial difference operator is represented in the form of the composition of two opera- 
tors with variable coefficients. 

We consider the difference analog of Eq. (2) 

A ~  ~ = q~ (v) + O (ha), (3 )  

where  m i s  the  i ndex  o f  t h e  i t e r a t i o n  f o r  s o l u t i o n  of  the  n - t h  o f  Eqs. ( 2 ) ;  qm i s  t h e  r i g h t -  
hand s i d e  of  (2) w i t h  c o r r e c t i o n ,  e n s u r i n g  the  r e q u i r e d  o r d e r  of  a p p r o x i m a t i o n ;  h e q u a l s  t h e  
maximum of  t h e  s t e p s  h x and hy a l o n g  t h e  h o r i z o n t a l  and v e r t i c a l  d i r e c t i o n s .  

On a nine-point pattern we represent the solution of (3) in the form 

~f~ i ]  + ~ h ,  .j + ~tJ~+,  ,I = z~ .  
,1, (4) 

a u ~ i + ,  + buz~ + a u ~ 4 _ l  = q~ , 

where the lower indices have the usual meaning. The difference operator on the left side of 
(3) can easily be transformed by two successive pivots with total number of operations O(N), 
where N is the number of points of the grid. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 36, No. 6, pp. 1077-]079, June, 
1979. Original article submitted July 25, 1978. 
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